Rosetta error model for gene expression analysis
نویسندگان
چکیده
MOTIVATION In microarray gene expression studies, the number of replicated microarrays is usually small because of cost and sample availability, resulting in unreliable variance estimation and thus unreliable statistical hypothesis tests. The unreliable variance estimation is further complicated by the fact that the technology-specific variance is intrinsically intensity-dependent. RESULTS The Rosetta error model captures the variance-intensity relationship for various types of microarray technologies, such as single-color arrays and two-color arrays. This error model conservatively estimates intensity error and uses this value to stabilize the variance estimation. We present two commonly used error models: the intensity error-model for single-color microarrays and the ratio error model for two-color microarrays or ratios built from two single-color arrays. We present examples to demonstrate the strength of our error models in improving statistical power of microarray data analysis, particularly, in increasing expression detection sensitivity and specificity when the number of replicates is limited.
منابع مشابه
Gene cloning and expression of soluble thrombopoietin functional domain by harnessing Rosetta-gami expression system
Background: Thrombopoietin (TPO) is an important cytokine that has a critical role in regulating hematopoietic stem cells (HSCs) proliferation and megakaryocyte differentiation. Because of scares amount of this protein in human plasma, in many biotechnological centers around the world, recombinant production of this protein has been carried out. This study was aiming to gene cloning and express...
متن کاملEstimating the Saturated Hydraulic Conductivity of Soil Using Gene Expression Programming Method and Comparing It with the Pedotransfer Functions
Saturated hydraulic conductivity of soil is an important physical property of soil that affects water movement in soil, Since the measurement of saturated hydraulic conductivity by direct methods in the field or in the laboratory is hard, time-consuming and costly, the indirect methods are being used.The aim of this study is to estimate the saturated hydraulic conductivity from other soil prope...
متن کاملPrediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...
متن کاملDevelopment of a GEP model to assess CERCHAR abrasivity index of rocks based on geomechanical properties
The CERCHAR abrasivity test is very popular for determination of rock abrasivity. An accurate estimation of the CERCHAR abrasivity index (CAI) is useful for excavation operation costs. This paper presents a model to calculate CAI based on the gene expression programming (GEP) approach. This model is trained and tested based on a database collected from the experimental results available in the ...
متن کاملPresenting a new equation for estimation of daily coefficient of evaporation pan using Gene Expression Programming and comparing it with experimental methods (Case Study: Birjand Plain)
One of the most important componenets of water management in farms is estimating crops’ exact amount of evapotranspiration (water need). The FAO-Penman-Montheis (FPM) method is a standard method to evaluate other techniques which are used for easy calculation of potential evapotranspiration, when lysimeter datasheets are not available. This study was carried out based on 18 years’ climatic dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 22 9 شماره
صفحات -
تاریخ انتشار 2006